3.6.55 \(\int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{\sqrt {a+i a \tan (c+d x)}} \, dx\) [555]

3.6.55.1 Optimal result
3.6.55.2 Mathematica [A] (verified)
3.6.55.3 Rubi [A] (verified)
3.6.55.4 Maple [B] (verified)
3.6.55.5 Fricas [B] (verification not implemented)
3.6.55.6 Sympy [F]
3.6.55.7 Maxima [F(-2)]
3.6.55.8 Giac [F]
3.6.55.9 Mupad [F(-1)]

3.6.55.1 Optimal result

Integrand size = 38, antiderivative size = 163 \[ \int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{\sqrt {a} d}+\frac {(A+i B) \sqrt {\cot (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {(3 A+i B) \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{a d} \]

output
(1/2+1/2*I)*(A-I*B)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+ 
c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d/a^(1/2)+(A+I*B)*cot(d*x+c)^ 
(1/2)/d/(a+I*a*tan(d*x+c))^(1/2)-(3*A+I*B)*cot(d*x+c)^(1/2)*(a+I*a*tan(d*x 
+c))^(1/2)/a/d
 
3.6.55.2 Mathematica [A] (verified)

Time = 4.10 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.74 \[ \int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {\frac {\sqrt {2} (i A+B) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {i a \tan (c+d x)}}+\frac {-6 i A+2 B-4 A \cot (c+d x)}{\sqrt {a+i a \tan (c+d x)}}}{2 d \sqrt {\cot (c+d x)}} \]

input
Integrate[(Cot[c + d*x]^(3/2)*(A + B*Tan[c + d*x]))/Sqrt[a + I*a*Tan[c + d 
*x]],x]
 
output
((Sqrt[2]*(I*A + B)*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a* 
Tan[c + d*x]]])/Sqrt[I*a*Tan[c + d*x]] + ((-6*I)*A + 2*B - 4*A*Cot[c + d*x 
])/Sqrt[a + I*a*Tan[c + d*x]])/(2*d*Sqrt[Cot[c + d*x]])
 
3.6.55.3 Rubi [A] (verified)

Time = 0.90 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.02, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.289, Rules used = {3042, 4729, 3042, 4079, 27, 3042, 4081, 27, 3042, 4027, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{\sqrt {a+i a \tan (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cot (c+d x)^{3/2} (A+B \tan (c+d x))}{\sqrt {a+i a \tan (c+d x)}}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x) \sqrt {i \tan (c+d x) a+a}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {A+B \tan (c+d x)}{\tan (c+d x)^{3/2} \sqrt {i \tan (c+d x) a+a}}dx\)

\(\Big \downarrow \) 4079

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} (a (3 A+i B)-2 a (i A-B) \tan (c+d x))}{2 \tan ^{\frac {3}{2}}(c+d x)}dx}{a^2}+\frac {A+i B}{d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} (a (3 A+i B)-2 a (i A-B) \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)}dx}{2 a^2}+\frac {A+i B}{d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} (a (3 A+i B)-2 a (i A-B) \tan (c+d x))}{\tan (c+d x)^{3/2}}dx}{2 a^2}+\frac {A+i B}{d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 4081

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {2 \int \frac {a^2 (i A+B) \sqrt {i \tan (c+d x) a+a}}{2 \sqrt {\tan (c+d x)}}dx}{a}-\frac {2 a (3 A+i B) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{2 a^2}+\frac {A+i B}{d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {a (B+i A) \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {2 a (3 A+i B) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{2 a^2}+\frac {A+i B}{d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {a (B+i A) \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {2 a (3 A+i B) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{2 a^2}+\frac {A+i B}{d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 4027

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {-\frac {2 i a^3 (B+i A) \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}-\frac {2 a (3 A+i B) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{2 a^2}+\frac {A+i B}{d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {(1-i) a^{3/2} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a (3 A+i B) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{2 a^2}+\frac {A+i B}{d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\right )\)

input
Int[(Cot[c + d*x]^(3/2)*(A + B*Tan[c + d*x]))/Sqrt[a + I*a*Tan[c + d*x]],x 
]
 
output
Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*((A + I*B)/(d*Sqrt[Tan[c + d*x]]*Sqr 
t[a + I*a*Tan[c + d*x]]) + (((1 - I)*a^(3/2)*(I*A + B)*ArcTanh[((1 + I)*Sq 
rt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d - (2*a*(3*A + I*B 
)*Sqrt[a + I*a*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]]))/(2*a^2))
 

3.6.55.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4079
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(a*A + b*B)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(2*f*m*( 
b*c - a*d))), x] + Simp[1/(2*a*m*(b*c - a*d))   Int[(a + b*Tan[e + f*x])^(m 
 + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m 
- b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x] /; Free 
Q[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] 
 && LtQ[m, 0] &&  !GtQ[n, 0]
 

rule 4081
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*d - B*c)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(f*(n + 
1)*(c^2 + d^2))), x] - Simp[1/(a*(n + 1)*(c^2 + d^2))   Int[(a + b*Tan[e + 
f*x])^m*(c + d*Tan[e + f*x])^(n + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c* 
m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x], x] /; Fr 
eeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 
0] && LtQ[n, -1]
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
3.6.55.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 702 vs. \(2 (133 ) = 266\).

Time = 0.60 (sec) , antiderivative size = 703, normalized size of antiderivative = 4.31

method result size
derivativedivides \(-\frac {\left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {3}{2}} \tan \left (d x +c \right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (i B \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 a \tan \left (d x +c \right )-i a}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}+2 i A \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 a \tan \left (d x +c \right )-i a}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{2}-A \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 a \tan \left (d x +c \right )-i a}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}+12 A \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \tan \left (d x +c \right )^{2}-i B \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 a \tan \left (d x +c \right )-i a}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )+2 B \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 a \tan \left (d x +c \right )-i a}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{2}+4 i B \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \tan \left (d x +c \right )^{2}+A \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 a \tan \left (d x +c \right )-i a}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )-20 i A \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \tan \left (d x +c \right )+4 B \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}-8 A \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{4 d a \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{2}}\) \(703\)
default \(-\frac {\left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {3}{2}} \tan \left (d x +c \right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (i B \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 a \tan \left (d x +c \right )-i a}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}+2 i A \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 a \tan \left (d x +c \right )-i a}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{2}-A \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 a \tan \left (d x +c \right )-i a}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}+12 A \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \tan \left (d x +c \right )^{2}-i B \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 a \tan \left (d x +c \right )-i a}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )+2 B \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 a \tan \left (d x +c \right )-i a}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{2}+4 i B \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \tan \left (d x +c \right )^{2}+A \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 a \tan \left (d x +c \right )-i a}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )-20 i A \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \tan \left (d x +c \right )+4 B \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}-8 A \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{4 d a \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{2}}\) \(703\)

input
int(cot(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(1/2),x,method=_R 
ETURNVERBOSE)
 
output
-1/4/d*(1/tan(d*x+c))^(3/2)*tan(d*x+c)*(a*(1+I*tan(d*x+c)))^(1/2)/a*(I*B*l 
n((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+3*a*tan(d* 
x+c)-I*a)/(tan(d*x+c)+I))*2^(1/2)*a*tan(d*x+c)^3+2*I*A*ln((2*2^(1/2)*(-I*a 
)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+3*a*tan(d*x+c)-I*a)/(tan(d*x 
+c)+I))*2^(1/2)*a*tan(d*x+c)^2-A*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan 
(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+3*a*tan(d*x+c)-I*a)/(tan(d*x+c)+I))*a*tan( 
d*x+c)^3+12*A*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c 
)^2-I*B*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+3 
*a*tan(d*x+c)-I*a)/(tan(d*x+c)+I))*2^(1/2)*a*tan(d*x+c)+2*B*2^(1/2)*ln((2* 
2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+3*a*tan(d*x+c)- 
I*a)/(tan(d*x+c)+I))*a*tan(d*x+c)^2+4*I*B*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^ 
(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2+A*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c) 
*(1+I*tan(d*x+c)))^(1/2)+3*a*tan(d*x+c)-I*a)/(tan(d*x+c)+I))*2^(1/2)*a*tan 
(d*x+c)-20*I*A*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+ 
c)+4*B*tan(d*x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)-8*A*( 
a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2))/(a*tan(d*x+c)*(1+I*tan( 
d*x+c)))^(1/2)/(-I*a)^(1/2)/(-tan(d*x+c)+I)^2
 
3.6.55.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 426 vs. \(2 (125) = 250\).

Time = 0.25 (sec) , antiderivative size = 426, normalized size of antiderivative = 2.61 \[ \int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{\sqrt {a+i a \tan (c+d x)}} \, dx=-\frac {{\left (\sqrt {2} a d \sqrt {-\frac {-i \, A^{2} - 2 \, A B + i \, B^{2}}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} \log \left (-\frac {4 \, {\left ({\left (A - i \, B\right )} a e^{\left (i \, d x + i \, c\right )} + {\left (i \, a d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, a d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {-\frac {-i \, A^{2} - 2 \, A B + i \, B^{2}}{a d^{2}}}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) - \sqrt {2} a d \sqrt {-\frac {-i \, A^{2} - 2 \, A B + i \, B^{2}}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} \log \left (-\frac {4 \, {\left ({\left (A - i \, B\right )} a e^{\left (i \, d x + i \, c\right )} + {\left (-i \, a d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, a d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {-\frac {-i \, A^{2} - 2 \, A B + i \, B^{2}}{a d^{2}}}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) + 2 \, \sqrt {2} {\left ({\left (5 \, A + i \, B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} - A - i \, B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 \, a d} \]

input
integrate(cot(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(1/2),x, al 
gorithm="fricas")
 
output
-1/4*(sqrt(2)*a*d*sqrt(-(-I*A^2 - 2*A*B + I*B^2)/(a*d^2))*e^(I*d*x + I*c)* 
log(-4*((A - I*B)*a*e^(I*d*x + I*c) + (I*a*d*e^(2*I*d*x + 2*I*c) - I*a*d)* 
sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I 
*d*x + 2*I*c) - 1))*sqrt(-(-I*A^2 - 2*A*B + I*B^2)/(a*d^2)))*e^(-I*d*x - I 
*c)/(I*A + B)) - sqrt(2)*a*d*sqrt(-(-I*A^2 - 2*A*B + I*B^2)/(a*d^2))*e^(I* 
d*x + I*c)*log(-4*((A - I*B)*a*e^(I*d*x + I*c) + (-I*a*d*e^(2*I*d*x + 2*I* 
c) + I*a*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) 
+ I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(-(-I*A^2 - 2*A*B + I*B^2)/(a*d^2)))*e 
^(-I*d*x - I*c)/(I*A + B)) + 2*sqrt(2)*((5*A + I*B)*e^(2*I*d*x + 2*I*c) - 
A - I*B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I 
)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-I*d*x - I*c)/(a*d)
 
3.6.55.6 Sympy [F]

\[ \int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \cot ^{\frac {3}{2}}{\left (c + d x \right )}}{\sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )}}\, dx \]

input
integrate(cot(d*x+c)**(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))**(1/2),x)
 
output
Integral((A + B*tan(c + d*x))*cot(c + d*x)**(3/2)/sqrt(I*a*(tan(c + d*x) - 
 I)), x)
 
3.6.55.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{\sqrt {a+i a \tan (c+d x)}} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate(cot(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(1/2),x, al 
gorithm="maxima")
 
output
Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 
3.6.55.8 Giac [F]

\[ \int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int { \frac {{\left (B \tan \left (d x + c\right ) + A\right )} \cot \left (d x + c\right )^{\frac {3}{2}}}{\sqrt {i \, a \tan \left (d x + c\right ) + a}} \,d x } \]

input
integrate(cot(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(1/2),x, al 
gorithm="giac")
 
output
integrate((B*tan(d*x + c) + A)*cot(d*x + c)^(3/2)/sqrt(I*a*tan(d*x + c) + 
a), x)
 
3.6.55.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int \frac {{\mathrm {cot}\left (c+d\,x\right )}^{3/2}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )}{\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}} \,d x \]

input
int((cot(c + d*x)^(3/2)*(A + B*tan(c + d*x)))/(a + a*tan(c + d*x)*1i)^(1/2 
),x)
 
output
int((cot(c + d*x)^(3/2)*(A + B*tan(c + d*x)))/(a + a*tan(c + d*x)*1i)^(1/2 
), x)